a. Ta thấy ˆHDC=ˆHEC=90oHDC^=HEC^=90o nên CDHE là tứ giác nội tiếp đường tròn đường kính HC.
b. Ta thấy ngay ˆIAC=ˆKBCIAC^=KBC^ (Cùng phụ với góc ACB) nên \wideba=\widebatKC\wideba=\widebatKC (Góc nội tiếp)
suy ra IC = KC ( Liên hệ giữa cung và dây)
Vậy nên tam giác IKC cân tại C.
c. Do \wideba=\widebatKC\wideba=\widebatKC nên ˆKAC=ˆACIKAC^=ACI^ (Góc nội tiếp)
Xét tam giác AHK có AE vừa là đường cao, vừa là phân giác nên AHK là tam giác cân tại A, hay AH = AK.
d. Ta thấy do BOF là đường kính nên ˆBCF=90o⇒BCF^=90o⇒ AH // FC (Cùng vuông góc với BC).
Tương tự AF // HC vì cùng vuông góc với AB. Vậy thì AFCH là hình bình hành hay AC giao FH tại trung điểm mỗi đường.
P là trung điểm AC nên F cũng là trung điểm FH. Vậy F, H, P thẳng hàng.