Cho tam giác ABC cân tại A , các đường cao AH và BK . Qua B kẻ đường thẳng vuông góc BC cắt đường thẳng AC tại D . CMR \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
cho tam giác ABC cân tại A, đường cao AH và BK. CMR: \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Cho tam giác ABC cân tại A. Kẻ đường cao AH, BK, CI. C/m:
a. \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
b. \(DE^3=BD.CE.BC\)
c. \(\frac{AB^3}{AC^3}=\frac{DB}{EC}\)
Cho tam giác ABC vuông ở A , đường cao AH , BC= 100 , AH =48
a, Tính AB , AC
b, Từ B vẽ tia BX sao cho góc ABx = góc ACB . BX cắt AC tại D
Chứng Minh\(\frac{1}{AB^2}=\frac{1}{BD^2}+\frac{1}{BC^2}\)
1. cho tam giác ABC đg cao AD cắt BE tại H . Vẽ trung tuyến AM . Gọi G là trọng tâm tam giác ABC biết HG//BC
c/m : tanB.tanC=3
2. cho tam giác ABC vg tại A
c/m :\(\frac{\tan B}{2}=\frac{AC}{AB+BC}\)
Cho tam giác ABC cân có AB=AC=9cm, BC=12cm, đường cao AH, I là hình chiếu của H trên AC.
a) Tính độ dài CI.
b) Kẻ đường cao BK của tam giác ABC. Chứng minh rằng điểm K nằm giữa hai điểm C và A.
Cho tam giác abc cân tại a. 2 đường cao ah= 20, bk= 24. Tính 3 cạnh tam giác abc
Bài 1 : cho tam giác ABC có góc A và B nhọn , các đg trung tuyến BM và CN vuông góc với nhau tại G . CMR :\(cotB+cotC\ge\frac{2}{3}\)
Bài 2 Cho tam giác ABC có 3 góc nhọn có BC=a,CA=b,AB=c. cmr
a.\(a^2=b^2+c^2-2bc.cosA\)
b.\(sin\frac{A}{2}\le\frac{a}{b+c}\)
c.\(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
Cho ΔABC vuông tại A, đường cao AH. Cmr:
a, AB2 = BH . BC
b, AH2 = BH . CH
c, \(\frac{1}{AH^2}\)= \(\frac{1}{AB^2}\)+ \(\frac{1}{AC^2}\)