LC

Cho tam giac ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC) a/Chứng minh: tam giác AHB=tam giác AHC b/Giả sử AB=AC=5cm,BC=8cm. Tính độ dài AH c/Trên tia đối của tia HA lấy điểm M sao cho HM=HA. Chứng minh: tam giác ABM cân d/Chứng minh BM// AC Cho mik cái hình

NH
26 tháng 6 2020 lúc 16:15

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

Bình luận (0)
 Khách vãng lai đã xóa
LD
26 tháng 6 2020 lúc 16:31

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )

Bình luận (0)
 Khách vãng lai đã xóa
H24
26 tháng 6 2020 lúc 16:33

A B C H M

a. Xét hai tam giác vuông AHB và tam giác vuông AHC có 

                \(\widehat{AHB}=\widehat{AHC}=90^O\)

               Cạnh AH chung 

               AB = AC [ vì tam giác ABC cân tại A ]

Do đó ; tam giác AHB = tam giác AHC [ cạnh huyền - cạnh góc vuông ]

b.Theo câu a ; tam giác AHB = tam giác AHC 

\(\Rightarrow\)HB = HC =\(\frac{BC}{2}=\frac{8}{2}=4cm\)

Áp dụng định lí Py-ta-go vào tam giác vuông AHB có 

 \(AB^2=AH^2+HB^2\)

\(\Rightarrow AH^2=AB^2-HB^2\)

\(\Rightarrow AH^2=5^2-4^2\)

\(\Rightarrow AH^2=9\)

\(\Rightarrow AH=3cm\)

c.Xét hai tam giác vuông AHB và tam giác vuông MHB có 

            \(\widehat{AHB}=\widehat{MHB}=90^O\) 

           Cạnh HB chung

            HA = HM [ gt ]

Do đó ; tam giác AHB = tam giác MHB [ cạnh góc vuông - cạnh góc vuông ]

\(\Rightarrow\)AB = MB [ cạnh tương ứng ]

Vậy tam giác ABM là tam giác cân tại B 

d.Vì tam giác ABM cân tại B nên góc BAM = góc BAM [ 1 ]

Theo câu a ; tam giác AHB = tam giác AHC 

\(\Rightarrow\)góc HAB = góc HAC hay góc MAB = góc MAC [ 2 ]

Từ [ 1 ] và [ 2 ] suy ra ; góc BMA = góc CAM [ ở vị trí so le trong ]

Vậy BM // AC

Học tốt

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BH
Xem chi tiết
AB
Xem chi tiết
ND
Xem chi tiết
BH
Xem chi tiết
NT
Xem chi tiết
BH
Xem chi tiết
NP
Xem chi tiết
DH
Xem chi tiết
NM
Xem chi tiết