NP

Cho tam giác ABC cân tại A. Gọi M, N thứ tự là trung điểm của AC và AB. gọi G là giao điểm của BM và CN. Chứng minh: a) tam giác AMN cân, b) BM = CN, c) tam giác GBC cân

LV
1 tháng 5 2019 lúc 23:19

a, Do \(NA=NB=\frac{1}{2}AB\)

\(AM=MC=\frac{1}{2}AC\)

Mà \(AB=AC\)\(\Rightarrow NA=MA;NB=MC\)\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)

b, Xét \(\Delta ANC\)và \(\Delta AMB\)có:

\(\widehat{BAC}chung\)

\(AB=AC\)

\(AN=AM\)(câu a)

\(\Rightarrow\Delta ANC=\Delta AMB\)

\(\Rightarrow BM=CN\)

c, Xét \(\Delta NBC\) và\(\Delta MCB\) có:

\(BCchung\)

NB = MC ( câu a)

NC = MB ( câu b)

=>\(\Delta NBC=\Delta MCB\)=>\(\widehat{GBC}=\widehat{GCB}\)=>\(\Delta GBC\) cân tại C

TYM cho chị nhé <3

Bình luận (0)

Các câu hỏi tương tự
DP
Xem chi tiết
TL
Xem chi tiết
MT
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết
PN
Xem chi tiết
HP
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết