Bài 9: Tính chất ba đường cao của tam giác

SK

Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC ?

TP
14 tháng 4 2018 lúc 21:24

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.

Suy ra: AD ⊥ BC

Ta có: CH ⊥ AB (gt)

Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC

Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.

Vậy BD ⊥ AC.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
7T
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
LL
Xem chi tiết
HC
Xem chi tiết