Cho \(\Delta ABC\) cân tại A, có BC = 2a, M là trung diểm BC, lấy D, E thuộc AB, AC sao cho\(\widehat{DME}=\widehat{B}\)
a) CM tích BD . CE không đổi
b) CM DM là tia phân giác của \(\widehat{BDE}\)
c) Tính chu vi của tam giác AED nếu tam giác ABC là tam giác đều.
Cho tam giác ABC cân tại A. M là trung điểm BC. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho góc CME = góc BDM. Chứng minh:
a, \(BD.CE=BM^2\).
b, Tam giác MDE\(\approx\)tam giác BDM.
c, DM là phân giác góc BDE.
1.cho tam giác ABC cân tại A. M là trung điểm của BC. D,E lần lượt thuộc các cạnh AB,ACsao cho góc DEM= góc B. CMR :a) DM là tia phân giác góc BDE. b)BDxCE=BC^ : 4
Cho \(\Delta ABC\) cân tai A, có BC=2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho \(\widehat{DME}=\widehat{B}\)
a, C/M tích BD.CE không đổi
b, C/M DM là tia phân giác của góc BDE
c, Tính chu vi của tam giác AED nếu tam giác ABC là tam giác đều
( Mọi người ơi, mình đang cần rất gấp. Cảm ơn mọi người nhiều )
cho tam giác ABC cân tại A , M là trung điểm D và E theo thứ tụ thuộc các cạnh AB và AC . sao cho góc CME = góc BDM :a,CM : BD.CE=BM^2
cho tam giác ABC cân tại A , M là trung điểm D và E theo thứ tụ thuộc các cạnh AB và AC . sao cho góc CME = góc BDM :a,CM : BD.CE=BM^2
Luyện tập tam giác đồng dạng:
Cho ΔABC cân tại A có M là trung điểm của BC. Lấy điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho ∠DME = ∠ABC. Chứng minh rằng:
a) ∠BMD= ∠MEC.
b) ΔBMD∼ ΔCEM.
c)MD.MB= ME. BD
d) chứng minh: ΔBDM∼ΔMDE và suy ra DM là tia phân giác của ∠BDE
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
Cho tam giác ABC , trung tuyến AI , đường phân giác của góc AIB cắt AB tại D, tia phân giác của góc AIC cắt AC tại E a) cm AD/DB=AE/EC và DE // BC AI cắt DE tại O . cm O là trung điểm DE biết BC = 20cm AI = 15 tính DE