Cho \(\Delta ABC\) cân tai A, có BC=2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho \(\widehat{DME}=\widehat{B}\)
a, C/M tích BD.CE không đổi
b, C/M DM là tia phân giác của góc BDE
c, Tính chu vi của tam giác AED nếu tam giác ABC là tam giác đều
( Mọi người ơi, mình đang cần rất gấp. Cảm ơn mọi người nhiều )
Cho tam giác ABC cân tại A có BC= 2a. M là trung điểm BC. Lấy D, E theo thứ tự thuộc AB,AC sao cho góc DME = góc B.
a) CM: \(BD\times CE\) không đổi
b)CM: DM là phân giác góc BDE
c) Tính chu vi \(\Delta\)ADE nếu \(\Delta\)ABC đều
Mình cần gấp!
1.cho tam giác ABC cân tại A. M là trung điểm của BC. D,E lần lượt thuộc các cạnh AB,ACsao cho góc DEM= góc B. CMR :a) DM là tia phân giác góc BDE. b)BDxCE=BC^ : 4
Cho tam giác ABC cân tại A. M là trung điểm BC. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho góc CME = góc BDM. Chứng minh:
a, \(BD.CE=BM^2\).
b, Tam giác MDE\(\approx\)tam giác BDM.
c, DM là phân giác góc BDE.
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
cho tam giác abc vuông tại a có ab=3cm ac=4cm a, Chứng minh tam giác HBA đồng dạng với tam giác ABC b,Tính độ dài các đoạn thẳng BC , AH c, Gọi AD là đường phân giác của ˆ B A C ( D thuộc BC ) ; DE là đường phân giác của ˆ A D B ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng A E E B . D E D C . E C E A = 1
Cho tam giác ABC vuông tại A , đường cao AH , I là trung điểm của AC , IF vuông góc với BC ( F thuộc BC ) , CE vuông góc với AC ( E là giao điểm của CE với tia IF ) . G, K lần lượt là giao điểm của AH, AE với BI .CM :
a, Tam giác IHE = Tam giác ICE , tính góc IHE
b, Tam giác IHE đồng dạng với tam giác BHA ; tam giác BHI đồng dạng với tam giác AHE
c, AE vuông góc với BI
Cho tam giác ABC, AB = 4,8 cm; BC = 3,6 cm; AC = 6,4 cm. Trên cạnh AB lấy điểm E sao cho AE = 2,4 cm, trên cạnh AC lấy điểm D sao cho AD = 3,2 cm. Gọi giao điểm của ED và CB là F.
a, C/m tam giác ABC đồng dạng với tam giác AFD
c, tính FD
?
Cho tam giác ABC có Â = 90°, AB = 3cm và AC = 4 cm . Đường cao AH (H thuộc BC) a, chứng minh tam giác ABC đồng dạng tam giác HAC b, chứng minh AC² = BC.HC c,Tia phân giác góc A cắt BC tại D. Tính độ dài các đoạn thẳng BC , DB