TT

Cho tam giác ABC cân tại A có A= 40°. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE. a. Tính ADE và chứng minh DE // BC b. Chứng minh : AABE =AACD c. Gọi I là giao điểm của BE VÀ CD. Chứng minh AI là đường trung tuyến của tam giác ABC

LD
5 tháng 4 2022 lúc 15:35

a, Ta có : \(AD=AE\left(gt\right)\)

→ ΔADE là tam giác cân ở A

\(\Rightarrow\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40}{2}=70^0\)

Mà ΔABC cũng là tam giác cân 

\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}=70^0\)

\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(=70^0\right)\)

mà  2 góc này ở vị trí so le  trong

\(\Rightarrow DE//BC\)

b, Xét ΔABE và ΔACD có :

\(AB=AC\left(\Delta ABC\cdot cân\right)\)

\(\widehat{A}:chung\)

\(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\)

c, Nối dài đoạn AI xuống BC, ta được đường phân giác AK của tam giác ABC.

Mà ΔABC cân ở A

→ AK là đường trung tuyến của tam giác ABC

→ AI cũng là đường trung tuyến của tam giác ABC

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
HN
Xem chi tiết
ND
Xem chi tiết
YN
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
CC
Xem chi tiết
NH
Xem chi tiết