Ôn tập toán 8

DL

Cho tam giác ABC cân tại A. Các đường phân giác BE và CF. Chứng minh : 

a) góc ABE = góc ACF

b) ∆AFE cân

c) Tứ giác BFEC là hình thang cân có đáy nhỏ bằng cạnh bên.

 

TL
3 tháng 9 2016 lúc 21:43

Có: BE là tia pg của ^B(gt)

      CF là tia og của C(gt)

Mà ^B=^C

=> ^ABE=^CBE=^ACF=^BCF

b) Xét ΔABE và ΔACF có:

^A : góc chung

 AB=AC(gt)

^ABE=^ACF(cmt)

=>ΔABE=ΔACF(g..c.g)

=> AE=AF

=>ΔAEF cân tại A

=> \(\widehat{AFE\:}=\frac{180-\widehat{A}}{2}\)               (1)

Có: ΔABC cân tại A(gt)

=> \(\widehat{ABC}=\frac{180-\widehat{A}}{2}\)              (2)

Từ (1)(2) suy ra:

^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị

=>FE//BC

Mà ^B=^C(gt)

=> tứ giác BFEC là ht cân

Bình luận (3)

Các câu hỏi tương tự
TM
Xem chi tiết
MC
Xem chi tiết
NJ
Xem chi tiết
NH
Xem chi tiết
DN
Xem chi tiết
TD
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết