Violympic toán 9

H24

Cho tam giác ABC cân tại A. BD,CE là đường cao. AB=c, BC=a, AC=b. Chứng minh rằng: \(DE=\dfrac{a\left(2b^2-a^2\right)}{2b^2}\)

TH
13 tháng 1 2021 lúc 22:12

Ta thấy b = c.

Thêm đk của đề bài là \(\widehat{A}\leq 90^o\), vì nếu ngược lại thì \(a^2>2b^2\) và khi đó điều cần cm sẽ sai.

Do tam giác ABC cân tại A nên DE // BC.

Theo định lý Thales ta có: \(\dfrac{DE}{BC}=\dfrac{AE}{AB}\Leftrightarrow\dfrac{DE}{a}=\dfrac{AE}{b}\Leftrightarrow DE=\dfrac{a.AE}{b}\).

Ta lại có: \(\left\{{}\begin{matrix}AE^2-BE^2=AC^2-BC^2=b^2-a^2\\AE+BE=AB=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE-BE=\dfrac{b^2-a^2}{b}\\AE+BE=b\end{matrix}\right.\Rightarrow AE=\left(\dfrac{b^2-a^2}{b}+b\right):2=\dfrac{2b^2-a^2}{2b}\).

Do đó \(DE=\dfrac{a\left(2b^2-a^2\right)}{2b^2}\).

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
VT
Xem chi tiết
NS
Xem chi tiết
DD
Xem chi tiết
CT
Xem chi tiết
DP
Xem chi tiết
AR
Xem chi tiết
ND
Xem chi tiết
YM
Xem chi tiết