Do tam giác ABC cân tại A nên AM là đường trung tuyến đồng thời là đường cao. BM=1/2 BC=5cm
Áp dụng định lí Pytago trong tam giác ABM ta có:
AB2 = BC2 + BM2 = 122 + 52 = 169 ⇒ AB = 13cm. Chọn B
Do tam giác ABC cân tại A nên AM là đường trung tuyến đồng thời là đường cao. BM=1/2 BC=5cm
Áp dụng định lí Pytago trong tam giác ABM ta có:
AB2 = BC2 + BM2 = 122 + 52 = 169 ⇒ AB = 13cm. Chọn B
Cho tam giác ABC cân tại A. Vẽ trung tuyến AM của tam giác. Biết B C = 12 c m , A B = A C = 10 c m thì độ dài AM là:
A. 22cm
B. 4cm
C. 8cm
D. 10cm
cho tam giác ABC cân tại A, M là trung điểm của BC. CMR: a, tam giác AMB= tam giác AMC. b, tính độ dài AM biết AB=10cm; BC=12cm c, kẻ đường trung tuyến CE cắt AM tại D. gọi I là điểm cách đều 3 cạnh của tam giác ABC. CMR: I;D;M thẳng hàng.
Cho tam giác ABC cân tại A có A B = A C = 10 c m , đường trung tuyến AM (M∈BC) có độ dài là 6cm. Khi đó BC có độ dài là:
A. 16cm
B. 12cm
C. 14cm
D. 8cm
Cho tam giác ABC cân tại A có A B = A C = 10 c m , đường trung tuyến AM ( M thuộc BC) có độ dài là 8cm. Khi đó độ dài BC là:
A. 12cm
B. 14cm
C. 10cm
D. 8cm
Cho tam giác ABC cân tại A có A B = A C = 10 c m , đường trung tuyến AM (M∈BC) có độ dài là 6cm. Khi đó BC có độ dài là:
A. 16cm
B. 12cm
C. 14cm
D. 8cm
Cho tam giác ABC cân. Biết AB = AC = 10cm, BC = 12cm. M là trung điểm BC. Độ dài trung tuyến AM là:
A. 22cm.
B. 4cm.
C. 8cm.
D. 6cm.
Cho tam giác ABC cân tại A có AB =10cm, BC = 12cm. Gọi M là trung điểm của BC. Tính độ dài AM.
Cho tam giác ABC cân tại A. Đường trung tuyến AM, CHo biết AB=13cm BC=10cm
a, Tính độ dài AM
b, Trên AM lấy G sao cho GM=1/3AM
c, tính BN
d, Tia bG cắt AB tại L c/m LN//BC
Cho tam giác ABC cân tại A, A B = 10 c m , B C = 16 c m . Độ dài đường trung tuyến AM là:
A. 6cm
B. 156 c m
C. 2cm
D. 4cm