Bài 6: Tính chất ba đường phân giác của tam giác

SK

Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau ở I. Gọi D và E là chân các đường vuông góc kẻ từ I đến AB và AC

a) Chứng minh rằng AD = AE

b) Tính các độ dài AD, AE biết rằng AB = 6cm, AC = 8cm

HN
29 tháng 5 2017 lúc 16:26

A B C D E F I

a) AI là tai phân giác của góc A nên ID = IE. (1)

Các tam giác vuông ADI, AEI có \(\widehat{DAI}=\widehat{EAI}=45^o\) nên là tam giác vuông cân, do đó AD = ID, AE = IE. (2)

Từ (1) và (2) suy ra AD = AE.

b) Áp dụng định lí Py-ta-go trong tam giác vuông ABC:

BC2 = AB2 + AC2 = 62 + 82

BC2 = 36 + 64 = 100

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\).

Kẻ IF \(\perp\) BC

Xét hai tam giác vuông IBD và IBF có:

BI: cạnh huyền chung

\(\widehat{IBD}=\widehat{IBF}\) (gt)

Vậy: \(\Delta IBD=\Delta IBF\left(ch-gn\right)\)

\(\Rightarrow\) BD = BF (hai cạnh tương ứng)

Xét hai tam giác vuông ICE và ICF có:

CI: cạnh huyền chung

\(\widehat{ICE}=\widehat{ICF}\left(gt\right)\)

Vậy: \(\Delta ICE=\Delta ICF\left(ch-gn\right)\)

Suy ra: CE = CF (hai cạnh tương ứng)

Ta có: AB + AC - BC = AD + DB + AE + EC - BF - CF.

Do BD = BF, CE = CF nên:

AB + AC - BC = AD + AE

\(\Rightarrow\) 6 + 8 - 10 = AD + AE

\(\Rightarrow\) AD + AE = 4 (cm).

Theo câu a) ta có AD = AE nên AD = AE = 2cm.

Bình luận (0)
NC
1 tháng 2 2018 lúc 21:41

Hình tự vẽ nhé!!!leuleu

a) AI là tai phân giác của góc A nên ID = IE. (1)

Các tam giác vuông ADI, AEI có ˆDAI=ˆEAI=45oDAI^=EAI^=45o nên là tam giác vuông cân, do đó AD = ID, AE = IE. (2)

Từ (1) và (2) suy ra AD = AE.

b) Áp dụng định lí Py-ta-go trong tam giác vuông ABC:

BC2 = AB2 + AC2 = 62 + 82

BC2 = 36 + 64 = 100

⇒BC=√100=10(cm)⇒BC=100=10(cm).

Kẻ IF ⊥⊥ BC

Xét hai tam giác vuông IBD và IBF có:

BI: cạnh huyền chung

ˆIBD=ˆIBFIBD^=IBF^ (gt)

Vậy: ΔIBD=ΔIBF(ch−gn)ΔIBD=ΔIBF(ch−gn)

⇒⇒ BD = BF (hai cạnh tương ứng)

Xét hai tam giác vuông ICE và ICF có:

CI: cạnh huyền chung

ˆICE=ˆICF(gt)ICE^=ICF^(gt)

Vậy: ΔICE=ΔICF(ch−gn)ΔICE=ΔICF(ch−gn)

Suy ra: CE = CF (hai cạnh tương ứng)

Ta có: AB + AC - BC = AD + DB + AE + EC - BF - CF.

Do BD = BF, CE = CF nên:

AB + AC - BC = AD + AE

⇒⇒ 6 + 8 - 10 = AD + AE

⇒⇒ AD + AE = 4 (cm).

Theo câu a) ta có AD = AE nên AD = AE = 2cm.

Bình luận (0)

Các câu hỏi tương tự
QD
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết
SK
Xem chi tiết
MH
Xem chi tiết
NA
Xem chi tiết
SK
Xem chi tiết
BD
Xem chi tiết
TP
Xem chi tiết