LH

Cho tam giác ABC. Các tia phân giác các góc A và C cắt nhau ở I. Các đường phân giác các góc ngoài tại đỉnh A và C cắt nhau ở K. Chứng minh rằng 3 điểm B, I, K thẳng hàng.

AH
6 tháng 5 2021 lúc 11:56

Lời giải:

Kẻ $KM, KT, KN$ lần lượt vuông góc với $AB, AC, BC$.

Vì $K$ thuộc tia phân giác $\widehat{MAC}$ nên $KM=KT$ (tính chất quen thuộc)

Vì $K$ thuộc tia phân giác $\widheat{ACN}$ nên $KN=KT$ 

$\Rightarrow KM=KN$ 

$\Rightarrow K$ thuộc tia phân giác $\widehat{MBN}$ hay $\widehat{ABC}$

Do đó $BI, BK$ cùng là tia phân giác $\widehat{ABC}$

$\Rightarrow B,I,K$ thẳng hàng

Bình luận (0)
AH
6 tháng 5 2021 lúc 12:00

Hình vẽ:

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
HM
Xem chi tiết
DT
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết
SO
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết
SG
Xem chi tiết