PB

Cho tam giác ABC, các đường trung tuyến BM, CN. Gọi D là điểm đối xứng với B qua M, gọi E là điểm đối xứng Với C qua N. Chứng minh rằng điểm D đối xứng với điểm E qua điểm A.

CT
18 tháng 3 2017 lúc 3:53

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét tứ giác ABCD, ta có:

MA = MC (gt)

MB = MD (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ AD // BC và AD = BC (1)

* Xét tứ giác ACBE, ta có:

AN = NB (gt)

NC = NE (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ACBE là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE // BC và AE = BC (2)

Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE

Nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.

Bình luận (0)
ET
3 tháng 10 2021 lúc 10:49

xét tam giác ADE có:

AB=DB( gt)

AC=EC (gt)

=> BC//DE ( t/c đường trung bình)

ta có: BC//DE (CMT)

AM vuông góc với BC

AM=IM

=> góc AID= góc AIE

Xét tam giác AEI và tam giác ADIcó:

góc DAI= góc EAI

AI chung 

góc AID= góc AIE (CMT)

=> tam giác  AEI = tam giác ADI (g.c.g)

=> DI=EI(2 cạnh tương ứng)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
GP
Xem chi tiết
1H
Xem chi tiết
HH
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
GP
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết