PB

Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE= IK.

CT
9 tháng 2 2018 lúc 9:52

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong  ∆ ABC, ta có:

E là trung điểm của AB (gt)

D là trung điểm của AC (gt)

Nên ED là đường trung bình của  ∆ ABC

⇒ ED//BC và ED = BC/2 (tính chất đường trung bình của tam giác) (l)

* Trong ∆ GBC, ta có:

I là trung điểm của BG (gt)

K là trúng điểm của CG (gt)

Nên IK là đường trung bình của  ∆ GBC

⇒ IK // BC và IK = BC/2 (tỉnh chất đường trung bình của tam giác) (2)

Từ (l) và (2) suy ra: IK // DE, IK = DE.

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
DD
Xem chi tiết
CM
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết