CC

Cho tam giác ABC biết AB < BC. Trên tia BA lấy điểm D sao cho BC = BD. Nối C với D, phân giác góc B cắt cạnh AC, DC lần lượt ở E và I
a) Chứng minh tam giác BED = tam giác BEC và IC = ID
b) Từ A vẽ đường thẳng vuông góc AH với DC ( H thuộc DC ) . Chứng minh AH // BI

ZP
13 tháng 7 2019 lúc 14:49

B C A D I E 1 2 H

a, Xét tam giác BED và tam giác BEC có:

BE chung

góc B1= góc B

BC=BD

=> tam giác BED = tam giác BEC (c.g.c)

Xét tam giác BDI và tam giác BCI có:

BI chung

góc B1= góc B2

BD=BC

=> tam giác BDI = tam giác BCI (c.g.c)

=> DI=CI

b,Vì BD=BC => tam giác BDC cân tại B

Mà BI là tia phân giác góc B

=> BI đồng thời là đường cao

=> BI vuông góc với DC

Mà AH vuông góc với DC

=> BI//AH

Bình luận (0)
EC
13 tháng 7 2019 lúc 14:56

A B C D E I H

Cm: a) Xét t/giác BED và t/giác BEC

có: BD = BC (gt)

\(\widehat{DBE}=\widehat{CBE}\)(gt)

  BE : chung

=> t/giác BED = t/giác BEC (c.g.c)

Ta có: BD = BC (gt) => t.giác BCD cân

Mà BI là tia p/giác góc B của t/giác BCD

=> BI đồng thời là đường  trung tuyến (t/c t/giác cân)

=> IC = ID

(phần này có thể xét 2 t/giác BID và t/giác BIC)

b) Ta có: t/giác BCD cân tại B

BI là tia p/giác của t/giác BCD

=> BI đồng thời là đường cao của t/giác (t/c của t/giác cân)

=> BI \(\perp\)DC

mà AH \(\perp\)DC

=> AH // BI (từ \(\perp\) đến //)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
NH
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết