Qua B kẻ đường thằng song song AD cắt CA tại E
Có \(\widehat{BAD}=\widehat{EBA}\left(slt\right);\widehat{DAC}=\widehat{E}\)(đồng vị)
Mà \(\widehat{BAD}=\widehat{DAC}\Rightarrow\widehat{EBA}=\widehat{E}\)
\(\Rightarrow\Delta BAE\)cân tại A \(\Rightarrow AB=AE=2\)
Sử dụng định lý Talet
\(\frac{AD}{EB}=\frac{AC}{EC}\Rightarrow\frac{1,2}{EB}=\frac{3}{AC+AE}\Rightarrow\frac{1,2}{EB}=\frac{3}{3+2}\Rightarrow\frac{1,2}{EB}=\frac{3}{5}\)
\(\Rightarrow EB=1,2:\frac{3}{5}=\frac{1,2\cdot5}{3}=\frac{6}{3}=2\)
\(\Rightarrow\Delta BAE\)đều => \(\widehat{BAE}=60^o\)
Mà \(\widehat{BAE}\)kề bù \(\widehat{BAC}\)\(\Rightarrow\widehat{BAC}=120^o\)