Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

DY

Cho tam giác ABC ( A < 90 độ), AB = AC.Kẻ CE vuông góc AB (E thuộc AB).Kẻ BD vuông góc AC,(D thuộc AC).Gọi O là giao điểm của BD và CE.
a)Chứng minh BD = CE
b)Chứng minh OE = OD và OB = OC
c)Chứng minh OA là phân giác BAC
Giúp mình nhé mình cần gấp

TN
29 tháng 11 2023 lúc 23:05

`a)` 

Có `Delta ABC` cân tại `A(g t)`

`=>hat(ABC)=hat(ACB)`

`=>hat(EBC)=hat(DCB)`

Xét `Delta BEC` và `Delta CDB` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(BC-chung),(hat(EBC)=hat(DCB)(cmt)):}}`

`=>Delta BEC=Delta CDB(c.h-g.n)`

`=>CE=BD` ( 2 cạnh tương ứng )( dpcm )

`b)`

Có `Delta BEC=Delta CDB(cmt)`

`=>hat(C_1)=hat(B_1)` ( 2 góc tương ứng )

`=>Delta BOC` cân tại `O`

`=>OB=OC`(dpcm)

Xét `Delta OEB` và `Delta ODC` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(OB=OC(cmt)),(hat(O_1)=hat(O_2)(doi.di nh)):}}`

`=>Delta OEB=Delta ODC(c.h-g.n)`

`=>OE=OD`( 2 cạnh tương ứng )(dpcm)

`c)`

Có `Delta ABC` cân tại `A(g t)`

`=>AB=AC`

`=>A in ` trung trực của `Delta ABC(1)`

Có `OB=OC(cmt)`

`=>O in` trung trực của `Delta ABC(2)`

Từ `(1)` và `(2)=>OA` là trung trực `Delta ABC`

mà `Delta ABC` cân tại `A` 

Nên `OA` là phân giác `hat(BAC)` (dpcm)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
VT
Xem chi tiết
BT
Xem chi tiết
TH
Xem chi tiết
TN
Xem chi tiết
LT
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
PY
Xem chi tiết