Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

Cho T=2/x+cănx+1(x>0;x#1) tìm x thuộc R để T thuộc Z

AH
13 tháng 9 2021 lúc 9:44

Lần sau bạn lưu ý gõ đề bằng công thức toán để được hỗ trợ tốt hơn.

Lời giải:

$x+\sqrt{x}+1>1$ với mọi $x>0, x\neq 1$

$\Rightarrow T=\frac{2}{x+\sqrt{x}+1}< 2$

$x+\sqrt{x}+1>0$ với mọi $x>0, x\neq 1$

$\Rightarrow T>0$

Vậy $0< T< 2$

$T$ nguyên $\Leftrightarrow T=1$

$\Leftrightarrow \frac{2}{x+\sqrt{x}+1}=1$

$\Leftrightarrow x+\sqrt{x}+1=2$

$\Leftrightarrow x+\sqrt{x}-1=0$

$\Rightarrow x=\frac{-1+\sqrt{5}}{2}$

$\Rightarrow x=\frac{3-\sqrt{5}}{2}$ (tm)

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
H24
Xem chi tiết
VA
Xem chi tiết
DB
Xem chi tiết
HB
Xem chi tiết
DB
Xem chi tiết
TH
Xem chi tiết
SS
Xem chi tiết
VH
Xem chi tiết