Cho \(\sqrt{x^2-7x+19}-\sqrt{x^2-7x+15}=2\)
Tính \(A=\sqrt{x^2-7x+19}+\sqrt{x^2-7x+15}\)
1, \(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
2, \(\sqrt{x-3}-2.\sqrt{x^2-3x}=0\)
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
4, \(x-5\sqrt{x}+4=0\)
Cho x>0 và \(\frac{x-2\sqrt{x}+1}{x-\sqrt{x}+1}=\frac{1}{2}\)
Tính \(B=\frac{3x\sqrt{x}+10x+19}{x^2+7x+15}\)
Giải phương trình:
\(\left(x+1\right)\left(x+4\right)=5\sqrt{x^2+5x+28}\)
\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-4x\)
\(x^2-7x+2\left(x+2\right).\sqrt{x+3}=24\)
Giải PT vô tỷ nha
giải hệ\(\hept{\begin{cases}y^4-2xy^2+7y^2=-x^2+7x+8\\\sqrt{3y^2+13}-\sqrt{15-2x}=\sqrt{x+1}\end{cases}}\)
\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
Giai PT:
a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)
b,\(\sqrt{3x^2+12x+16}+\sqrt{y^2+4x^2+13}=5\)
c.\(\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\)
giải phương trình sau
\(\sqrt{7x^2-22x+28}+\sqrt{7x^2+8x+13}+\sqrt{31x^2+14x+4}=3\sqrt{3}\left(x+2\right)\)