LJ

Cho số thực x, y, z thỏa mãn \(x^2+y^2+z^2-2x+4y-6z=15\). Chứng minh rằng: \(\left|2x-3y+4z-20\right|\le29\)

TH
25 tháng 10 2021 lúc 22:40

Giả thiết tương đương \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\).

Áp dụng bđt Cauchy - Schwarz ta có:

\(\left(2x-3y+4z-20\right)^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\Rightarrow\left|2x-3y+4z-20\right|\le29\)

Bình luận (0)

Các câu hỏi tương tự
LJ
Xem chi tiết
NN
Xem chi tiết
DA
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
TH
Xem chi tiết
DT
Xem chi tiết
VT
Xem chi tiết