Do \(-1\le x\le1\Rightarrow2-x^2>0\)
BĐT tương đương:
\(\Leftrightarrow2+2\sqrt{1-x^2}\ge\left(2-x^2\right)^2\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)
\(\Leftrightarrow2+2t\ge\left(1+t^2\right)^2\)
\(\Leftrightarrow t^4+2t^2-2t-1\le0\)
\(\Leftrightarrow\left(t-1\right)\left(t^3+t^2+3t+1\right)\le0\) (luôn đúng \(\forall t\in\left[0;1\right]\))
Dấu "=" xảy ra khi \(t=1\) hay \(x=0\)