PB

Cho số thực m và hàm số y=f(x) có đồ thị như hình vẽ. Phương trình f ( 2 x + 2 - x ) = m  nhiều nhất bao nhiêu nghiệm phân biệt thuộc đoạn [-1;2]?

A. 2

B. 3

C. 4

D. 5

CT
15 tháng 11 2018 lúc 2:00

Đặt t = t ( x ) = 2 x + 2 - x  với x ∈ [ - 1 ; 2 ]  

Hàm t=t(x) liên tục trên [-1;2] và

t ' ( x ) = 2 x ln 2 - 2 - x ln 2 , t ' ( x ) = 0 ⇔ x = 0

Bảng biến thiên

Vậy x ∈ [ - 1 ; 2 ] ⇒ t ∈ 2 ; 17 4  

Với mỗi t ∈ ( 2 ; 5 2 ]  có 2 giá trị của x thỏa mãn t = 2 x + 2 - x  

Với  mỗi t ∈ 2 ∪ 5 2 ; 17 4  có duy nhất 1 giá trị x thỏa mãn.

Xét phương trình f(t)=m với t ∈ 2 ; 17 4  

Từ đồ thị, phương trình f ( 2 x + 2 - x ) = m  có số nghiệm nhiều nhất khi và chỉ khi phương trình f(t)=m có 2 nghiệm t 1 , t 2 , trong đó có  t 1 ∈ ( 2 ; 5 2 ] ,   t 2 ∈ ( 5 2 ; 17 4 ]

Khi đó, phương trình  có nhiều nhất 3 nghiệm phân biệt thuộc đoạn [-1;2]

Chọn đáp án B.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết