PB

Cho số phức z thỏa mãn điều kiện z   + 1 i - z ¯  là số thực. Khi đó môđun của z có giá trị nhỏ nhất bằng

CT
7 tháng 12 2019 lúc 5:58

Đáp án A

Gọi  z = x + i y ,   x , y   ∈ ℝ  

z - 1 - i = 1   ⇔ x + i y - 1 - i = 1

⇔ x - 1 2   + y - 1 2 =   1 2   C

Gọi I là tâm của đường tròn (C).

Với mọi điểm P bất kì chạy trên S,

ta có  O P   ≤   O M   +   M P

do đó số phức tương ứng với P có môđun lớn nhất

khi và chỉ khi OP lớn nhất

OP = OM + MP

Tương đương 3 điểm O, M, P thẳng hàng

và M nằm giữa O và P 

⇔ P   ≡ P '   x P   > 1

Phương trình đường thẳng OI:  y = x

 

Tọa độ P’ là nghiệm của hệ phương trình :

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết