Bài 1: Số phức

SJ

cho số phức z = a + bi( a,b thuộc R) thoả mãn |z+1+i|=|z+2i| và P=|z-2-3i|+|z+1| đạt giá trị nhỏ nhất. Tính P=a+2b

MP
17 tháng 7 2018 lúc 13:49

ta có : \(\left|z+1+i\right|=\left|z+2i\right|\Leftrightarrow\left(a+1\right)^2+\left(b+1\right)^2+a^2+\left(b+2\right)^2\)

\(\Leftrightarrow b=a-1\)

khí đó : \(P=\left|z-2-3i\right|+\left|z+1\right|=\sqrt{\left(a-2\right)^2+\left(b-3\right)^2}+\sqrt{\left(a+1\right)^2+b^2}\)

\(\Leftrightarrow P=\sqrt{\left(a-2\right)^2+\left(a-4\right)^2}+\sqrt{\left(a+1\right)^2+\left(a-1\right)^2}\ge\sqrt{\left(2a-1\right)^2+\left(2a-5\right)^2}\)

dấu "=" xảy ra khi \(\dfrac{a-2}{a+1}=\dfrac{a-4}{a-1}=k>0\) \(\Leftrightarrow a\in\varnothing\) \(\Rightarrow\) không có giá trị của \(P=a+2b\)

Bình luận (0)

Các câu hỏi tương tự
LA
Xem chi tiết
CN
Xem chi tiết
KD
Xem chi tiết
VN
Xem chi tiết
NN
Xem chi tiết
KD
Xem chi tiết
KD
Xem chi tiết
TH
Xem chi tiết
TD
Xem chi tiết