cho số n nguyên dương và các tổng sau:
S\(_1\)=1+\(\dfrac{1}{5}\), S\(_2\)=1+\(\dfrac{1}{5}+\dfrac{1}{5^2}\), S\(_3\)=1+\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}\), S\(_n\)=1+\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+........+\dfrac{1}{5^n}\)
Chứng minh rằng: \(\dfrac{1}{5S_1^2}+\dfrac{1}{5^2S_2^2}+\dfrac{1}{5^3S^2_3}+.....+\dfrac{1}{5^nS^2_n}< \dfrac{35}{36}\)