Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

QN

cho số n nguyên dương và các tổng sau:

S\(_1\)=1+\(\dfrac{1}{5}\), S\(_2\)=1+\(\dfrac{1}{5}+\dfrac{1}{5^2}\), S\(_3\)=1+\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}\), S\(_n\)=1+\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+........+\dfrac{1}{5^n}\)

Chứng minh rằng: \(\dfrac{1}{5S_1^2}+\dfrac{1}{5^2S_2^2}+\dfrac{1}{5^3S^2_3}+.....+\dfrac{1}{5^nS^2_n}< \dfrac{35}{36}\)


Các câu hỏi tương tự
DH
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
NC
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
EC
Xem chi tiết