Violympic toán 9

ND

a)tính tổng S=\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+..+\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\)

b)Áp dụng, tìm phần nguyên của A=\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+...+\dfrac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\) với n lẻ

DD
22 tháng 7 2018 lúc 11:25

Câu a : Ta có :

\(\dfrac{1}{1+\sqrt{2}}=\dfrac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}=\dfrac{1-\sqrt{2}}{1-2}=\dfrac{1-\sqrt{2}}{-1}=-1+\sqrt{2}\)

\(\dfrac{1}{\sqrt{2}+\sqrt{3}}=\dfrac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\dfrac{\sqrt{2}-\sqrt{3}}{2-3}=\dfrac{\sqrt{2}-\sqrt{3}}{-1}=-\sqrt{2}+\sqrt{3}\)

.....................

\(\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{\left(\sqrt{n^2-1}+\sqrt{n^2}\right)\left(\sqrt{n^2-1}-\sqrt{n^2}\right)}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{-1}=-\sqrt{n^2-1}+\sqrt{n^2}\)

Thay vào ta được :

\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...........-\sqrt{n^2-1}+\sqrt{n^2}\)

\(=-1+\sqrt{n^2}\)

Bình luận (1)
AH
23 tháng 7 2018 lúc 10:54

Câu b:

Đặt biểu thức đã cho là $A$

Ta có:

\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)

\(\Leftrightarrow A> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)

\(\Leftrightarrow A> \frac{1}{2}(n-1)\) (áp dụng cách tính toán phần a)

Lại có:

\(A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{1+\sqrt{2}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}\right)+....+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-3}+\sqrt{n^2-2}}+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)

\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)

\(\Leftrightarrow A< \frac{\sqrt{n^2-1}}{2}\) (áp dụng cách tính toán của phần a)

Vậy \(\frac{\sqrt{n^2-1}}{2}> A> \frac{n-1}{2}\) hay \(\sqrt{t(t+1)}> A> t\) (đặt \(n=2t+1\) )

\(\sqrt{t(t+1)}< \sqrt{(t+1)(t+1)}=t+1\)

Do đó: \(t+1> A> t\)

\(\Rightarrow \lfloor{A}\rfloor=t=\frac{n}{2}\)

Bình luận (1)
ND
21 tháng 7 2018 lúc 19:00

ai giúp e nhanh lên đc k

Bình luận (0)
MP
21 tháng 7 2018 lúc 19:36

tương tự câu này thôi nha : https://hoc24.vn/hoi-dap/question/636899.html

Bình luận (7)

Các câu hỏi tương tự
DD
Xem chi tiết
BA
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
HH
Xem chi tiết