MN

Cho số hực dương a,b,c,d, e khác 0 thỏa mãn\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)

Chứng minh rằng\(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)=\(\dfrac{a}{e}\)

NM
14 tháng 12 2021 lúc 9:56

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=k\Rightarrow a=bk;b=ck;c=dk;d=ek\)

\(\Rightarrow a=bk=ck^2=dk^3=ek^4;b=ek^3\)

\(\Rightarrow\dfrac{a}{e}=\dfrac{ek^4}{e}=k^4\left(1\right)\)

Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(2\right)\)

Lại có \(\dfrac{a^4}{b^4}=\left(\dfrac{a}{b}\right)^4=\left(\dfrac{ek^4}{ek^3}\right)^4=k^4\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\RightarrowĐpcm\)

Bình luận (0)

Các câu hỏi tương tự
YT
Xem chi tiết
TD
Xem chi tiết
FT
Xem chi tiết
TL
Xem chi tiết
VM
Xem chi tiết
PL
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết