=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm
\(\overline{abc}⋮27\\ \Rightarrow10\overline{abc}⋮27\\ \Rightarrow\overline{abc0}⋮27\\ \Rightarrow1000a+\overline{bc0}⋮27\\ \Rightarrow999a+a+\overline{bc0}⋮27\\ \Rightarrow27\cdot37\cdot a+\overline{bca}⋮27\\ \text{Mà }27\cdot37a⋮27\\ \Rightarrow\overline{bca}⋮27\)
Ta có: abc=bca=cba=acb
Mà abc chia hết cho 27
=> bca cũng chia hết cho 27