Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A = 5 + 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^2014 + 5^2015. Tìm số dư khi chia số A cho 26
a, Tìm số dư khi chia tổng A=2013^n + 2014^n + 2015^n cho 2, với n là STN
b, Cho B=5+5^2+5^3+...+5^2015. Tìm STN n biết 4.B+5=5^n
tìm số dư của phép chia A cho 13 biết :
A=5+5^2+5^3+...+5^2014+5^2015
1.Chứng tỏ:
A-9+9^2+9^3+...+9^100 CHIA HẾT CHO 91
2.so sánh A và B
Biết A=2015^2001 ;B=2014^2000+2014^2001
3.tìm chữ số tận cùng của
A= 2^1+2^2+2^3+...+2^20
4.chứng minh A= 2^1+2^2+2^3+2^4+...+2^2016 chia hết cho6
5.A= 5^0+5^1+5^2+...+5^2002 chia cho 31 dư bao nhiêu?
6.Cho A= (-1)+2+(-3)+4+(-5)+6+....+(-2007)+2008+(-2009)+2010.Chứng minh A chia hết cho 5
7.tìm số dư khi chia số A=7^1+7^2+7^3+...+7^2013
8.tìm 2 số tự nhiên a,b biết a-b = 279 . Khi chia achio b thì được thương là 5 dư 3
9.Cho A=3^ 2013-11^671 . Chứng minh A chia hết cho2
Help me . Mai em nộp rồi. Em hiểu là đề hơi dài nhưng giúp em nhé. Xinh cảm ơn trước ạ!!!
số dư của A = 2017^2016 - 2015 ^2014 khi chia cho 5
cho a= 5^50- 5^48+5^46-5^44+...+5^6-5^4+5^2-1 a. tìm a b. tìm số tự nhiên n biết 26.A+1= 5^n c. tìm số dư trong phé chia a cho 100
Câu 1: Cho S = 5 + 52 + 53 + .........+ 52006
a, Tính S
b, Chứng minh S ⋮ 26
Câu 2. Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1; chia cho 4 dư 2 ; chia cho 5 dư 3;
chia cho 6 dư 4 và chia hết cho 11.
a) tìm số tự nhiên có ba chữ số lớn nhất mà khi chia số đó cho 4 dư 3, chia 5 dư 4, chia 6 dư 5
b) tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2; 3; 4; 5; 6 đều dư 1 và khi chia cho 7 thì không dư
1. Chứng tỏ rằng:
a. 105 + 35 chia hết cho 9 và cho 5
b. 105 + 98 chia hết cho 2 và cho 9
c. 102012 + 8 chia hết cho 3 và cho 9
d. 11...1 (27 chữ số 1) chia hết cho 27
2. Một số tự nhiên khi chia cho 4, cho 5, cho 6 đều dư 1. Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400.
3. Một số tự nhiên a khi chia hết cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5. Tìm số a, biết rằng 200 _< a _< 400.
4. Tìm số tự nhiên nhỏ nhất khi chia cho 15, 20, 25 được số dư lần lượt là 5, 10, 15.