S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\)
=>\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
=>\(S=1-\frac{1}{n+3}< 1\)
Vậy S<1 (đpcm)
S= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{n}-\frac{1}{n+3}\)
=> S = 1 - \(\frac{1}{n+3}\)