S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
tích nha
abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=111(a+b+c)
để 111(a+b+c)là số chính phương <=>a+b+c=111^2n+1 (n là số tự nhiên) =>a+b+c>hoặc =111 (1)
mà 0<a:b:c<hoặc =9 =>2<a+b+c<28 (2)
ta thấy (1) và (2) đối nghịch nhau nên a+b+c khác 111^2n+1 vậy abc+bca+cab ko phải là số chính phương (đpcm)
nhớ k cho mk nha bạn
cậu lấy đâu ra 1000a;1000b ;1000c vậy