S=abc+bca+cab
=100a+10b+c+100b+10c+a+100c+10a+b
=111a+111b+111c=111.(a+b+c)=3.37.(a+b+c)
Vì S là 1 SCP mà 37 là số nguyên tố=>S chia hết cho 37.nhưng a+b+c ko chia hết cho 37.
Vậy S ko là 1 SCP
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S