\(S=3+3^2+3^3+...+3^{100}\)
\(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(S=40.3+...+3^{96}\left(3+3^2+3^3+3^4\right)\)
\(S=40.3+...+3^{96}.40.3\)
\(S=40.3.\left(3^4+...+3^{96}\right)\)chia hết 40
Ta có: S = 3 + 32 + 33 + ...... + 3100
=> 3S = 32 + 33 + 33 +...... + 3101
=> 3S - S = 3101 - 3
=> 2S = 3101 - 3
=> S = \(\frac{3^{101}-3}{2}\)
Cho mk xin lỗi k nhầm đề:
Ta có: S = 3 + 32 + 33 + ..... + 3100
=> S = (3 + 32 + 33 + 34) + ..... + (397 + 398 + 399 + 3100)
=> S = 3.(1 + 3 + 9 + 27) + ..... + 397.(1 + 3 + 9 + 27)
=> S = 3.40 + ..... + 397.40
=> S = 40.(3 + .... + 397) chia hết cho 40 (đpcm)