S=2+22+23+...+2100
S=(2+22)+(23+24)+....+(299+2100)
S=6+22(23+24)+....+298(2+22)
S=1.6+22.6+...+298.6
S=6.(1+22+....+296) chia hết cho 3
S=2+22+23+...+2100
S=(2+22+23+24)+....+(297+298+299+2100)
S=30+.....+296(2+22+23+24)
S=1.30+....+296.30
S=30.(1+....+296) chia hết cho 15
a,2 + 2^2 + 2^3 + ... + 2^100
<=> (2+2^2) + (2^3+2^4) + .... + (2^99+2^100)
<=> 2.(1+2) + 2^3.(1+2) +.....+ 2^99.(1+2)
<=>2.3 + 2^3.3 +...+2699.3
<=>3.(2+2^3+....+2^99)
=> S chia hết cho 3
phần b chỉ cần nhóm 4 số vào thôi
a)S=2+22+23+24+...........+299+2100
S=(2+22)+(23+24)+..............+(299+2100)
S=2.(1+2)+23.(1+2)+..........+299.(1+2)
S=2.3+23.3+.................+299.3
S=3.(2+23+.........+299) chia hết cho 3
b)S=2+22+23+24+25+26+........298+299+2100
S=(2+22+23+24)+(25+26+27+28)+.........+(297+298+299+2100)
S=2.(1+2+22+23)+25.(1+2+22+23)+......+297.(1+2+22+23)
S=2.16+25.15+............+297.15
S=15.(2+25+........+297)chia hết cho 15
Vậy..........
a)+)Ta có:\(S=2+2^2+2^3+........+2^{100}\)
\(\Rightarrow S=\left(2+2^2\right)+\left(2^3+2^4\right)+.............+\left(2^{99}+2^{100}\right)\)
\(\Rightarrow S=\left(2+2^2\right)+2^2.\left(2+2^2\right)+.........+2^{98}.\left(2+2^2\right)\)
\(\Rightarrow S=6+2^2.6+.........+2^{98}.6\)
\(\Rightarrow S=6.\left(1+2^2+......+2^{98}\right)\)
\(\Rightarrow2.3.\left(1+2^2+.......+2^{98}\right)⋮3\)
Vậy \(A⋮3\)
b)Bạn làm tương tự nha
Chúc bn học tốt