Ta có: 5S-S=5100-1 => 4S=5100-1 => 4S+1=5100 = (550)2
Vậy 4S+1 là số chính phương
\(5S=5+5^2+5^3+..+5^{99}+5^{100}\)
\(5S-5=\left(5+5^2+....+5^{100}\right)-\left(1+5+5^2+...+5^{99}\right)\)
\(4S=5^{100}-1\)
\(S=\frac{5^{100}-1}{4}\)
\(S=1+5+5^2+5^3+.......+5^{99}\)
\(S=5^0+5+5^2+5^3+.......+5^{99}\)
\(5S=5+5^2+5^3+5^4+.......+5^{100}\)
\(5S-S=\left(5+5^2+5^3+5^4+......+5^{100}\right)-\left(1+5+5^2+5^3+.......+5^{99}\right)\)
\(4S=5^{100}-1\)
\(S=\frac{5^{100}-1}{4}\)
\(S=\frac{5^{5.20}-1}{4}=\frac{\left(5^5\right)^{20}-1}{4}=\frac{25^{20}-1}{4}\)
\(S=\frac{\left(....25\right)-1}{4}\)
\(S=\left(....24\right)\div4\)
\(S=\left(....6\right)\)
\(=>\)\(S\) là số chính phương.