S=1-5+52-53+...+52018
5S=5-52+53-54+...+52019
5S+S=(5-52+53-54+...+52019)+(1-5+52-53+...+52018)
6S = 52019+1
Tính A?????
S=1-5+52-53+...+52018
5S=5-52+53-54+...+52019
5S+S=(5-52+53-54+...+52019)+(1-5+52-53+...+52018)
6S = 52019+1
Tính A?????
Cho A = 2^2018 / 2^2018 + 3^2019 +3^2019/ 3^2019 + 5 ^ 2020 +5^2020 / 5^2020 + 2^2018
B=1/1*2+1/3*4+1/5*6+. . . +1/2019*2020
So sánh A và B
Giúp mk, mk kick cho
Cho A = 1+5^2+5^3+5^4+...+5^2018+5^2019 Tính 4.A+1
Cho A=(1+5+5^2+5^3+...+5^2018)/(1+5+5^2+5^3+...+5^2019)
B=(1+3+3^2+3^3+...+3^2018)/(1+3+3^2+3^3+...+3^2019)
Hãy so sánh A và B
Tính giá trị biểu thức \(A=\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2000}}+\frac{5^{2000}}{5^{2000}+2^{2018}}\)
Cho \(A=\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
\(B=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2019\cdot2020}\)
So sánh A và B
Mình rất cần vào sáng mai
TÍNH:
\(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
so sánh A và B biết:
A=\(\dfrac{2^{2018}}{2^{2018}+3^{2019}}\)+\(\dfrac{3^{2019}}{3^{2019}+5^{2020}}\)+\(\dfrac{5^{2020}}{5^{2020}+2^{2018}}\)
B=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{5.6}\)+...+\(\dfrac{1}{2019.2020}\).
Cho A=\(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
B= \(\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{2019.2020}\)
So sánh A và B
Cho A= \(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
và B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2010}\)
So sánh A và B