\(S_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2n}{2n+1}\right)=\dfrac{2n}{2\left(2n+1\right)}\)
-> chọn D
\(S_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
\(\Rightarrow\lim S_n=\lim\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)=\dfrac{1}{2}\left(1-0\right)=\dfrac{1}{2}\)