Cho tổng S=a+a^2+a^3+a^4+...+a^n. Với giá trị nào của n thì S chia hết cho a+1(a khác 0)
Cho tổng: S= a+ a2+ a3+ ......+an ( n khác 0 )
Với giá trị nào của n thì S chia hết cho a+1
cho tổng S =a +a^2+a^3+a^4+...+a^n vơi giá trị nào của n thì S chia hết cho a+1
help me ! Ngày mai nộp bài rồi
cho A= [n/2]+[n+1/2] B= [n/3]+[n+1/3]+[n+2/3] với giá trị nào của n thuộc Z thì a, Achia hết 2 b, B chia hết 3
Cho tổng S = \(a+a^2+a^3+...+a^n\left(n\in N\right)\)với giá trị nào của n để S chia hết cho a+1 (\(a\ne-1\))
Cho \(A=\left[\frac{n}{2}\right]+\left[n+\frac{1}{2}\right];B=\left[\frac{n}{3}\right]+\left[n+\frac{1}{3}\right]+\left[n+\frac{2}{3}\right]\)với giá trị nào của n thuộc Z thì :
a) A chia hết cho 2 ; b) B chia hết cho 3
Cho A = [n/2]+[(n+1)/2] ; B=[n/3]+[(n+1)/3]+[(n+2)/3]
với giá trị nào của n thuộc Z thì
a , A chia hết cho 2 ; b,B chia hết cho 3
*chú ý : [a] có nghĩa là phần nguyên của a
Cho A = [n/2]+[(n+1)/2] ; B=[n/3]+[(n+1)/3]+[(n+2)/3]
với giá trị nào của n thuộc Z thì
a , A chia hết cho 2 ; b,B chia hết cho 3
*chú ý : [a] có nghĩa là phần nguyên của a
Cho A = [n/2]+[(n+1)/2] ; B=[n/3]+[(n+1)/3]+[(n+2)/3]
với giá trị nào của n thuộc Z thì
a , A chia hết cho 2 ; b,B chia hết cho 3
*chú ý : [a] có nghĩa là phần nguyên của a