Bài làm:
Xét \(3^{4x}\) có chữ số tận cùng là 1 (x là số tự nhiên) vì:
\(3^{4x}=\left(3^4\right)^x=81^x=\left(...1\right)^x\)
Xét \(3^{4x+2}\) có chữ số tận cùng là 9 (x là số tự nhiên) vì:
\(3^{4x+2}=\left(3^4\right)^x.3^2=\left(...1\right)^x.9=\left(...9\right)^x\)
=> \(3^{4x}+3^{4x+2}=...0\) có chữ số tận cùng là 0
Ta có: \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(S=\left(3^0+3^{2002}\right)+\left(3^2+3^{2000}\right)+...+\left(3^{1000}+3^{1002}\right)\)
\(S=...0+...0+...+...0\)
\(S=...0\)
=> S có chữ số tận cùng là 0