4S - S = 4 + 42 + 43 + 44 +....+ 42002 + 42003 - 1 - 4 - 42 - 43 - 44 -......- 42001 - 42002
3S = 42003 - 1 => 42003 - 3S = 1 là số nguyên dương nhỏ nhất (đpcm)
4S - S = 4 + 42 + 43 + 44 +....+ 42002 + 42003 - 1 - 4 - 42 - 43 - 44 -......- 42001 - 42002
3S = 42003 - 1 => 42003 - 3S = 1 là số nguyên dương nhỏ nhất (đpcm)
chứng minh rằng
5^2003+5^2002+5^2001 chia hết cho 31
1+7+7^2+7^3+...+7^101 chia hết cho8
4^39+4^40+4^41 chia hết 28
chứng minh: B=75.(42003+42002+22001+.......+42+4+1)+25 chia hết cho 100
tính tổng đại số sau
a] S=1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
b] S=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
Cho C= 75.( 42001+42000+41999+ ... +42+41+40)+25
a)Chứng minh rằng C chia hết cho 42002
b)Hỏi C chia 42003 dư bao nhiêu
Giúp em bài này với !
Bài 1 : Tính giá trị biểu thức :
ax - ay + bx - by với a + b = 15, x - y = -4
Bài 2 : Chứng minh rằng nếu 2 số a, b là hai số nguyên khác 0 và a là bội của b; b là bội của a thì : a = b hoặc a = -b
Bài 3 : Tính S = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + .... + 2001 - 2002 - 2003 + 2004 + 2005
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Tính nhanh tổng đại số sau:
a) S=1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
b) S=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
Tính các tổng:
1/ S = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ...+ 2001- 2002 - 2003 + 2004
2/ S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + ...+ 2002 - 2003 - 2004 + 2005 + 2006
cho C = 75( 4^2001+4^2000+4^1999+...+4^2 +4^1+4^0)+25 chứng minh rằng C chia hết cho 4^2002