Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

LH

Cho S = 1 + 3^2 + 3^4 + 3^6 + ... + 3^98. Tinh tong S va chung minh S chia het cho 10

 

CH
16 tháng 11 2016 lúc 16:40

Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)

\(=\left(S-1\right)+3^{100}\)

\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)

Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10. 

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
EA
Xem chi tiết
SH
Xem chi tiết
NH
Xem chi tiết
DH
Xem chi tiết
ND
Xem chi tiết
HD
Xem chi tiết