S có số số hạng là
(99-0):1+1=100(số hạng)
ta thấy 100 chia hết cho 4 nên ta ghép 4 số liên tiếp lại với nhau ta có
S=(1-3+32-33)+....+(396-397+398-399)
S= -20+...+(-20) chia hết cho -20(đpcm)
S có số số hạng là
(99-0):1+1=100(số hạng)
ta thấy 100 chia hết cho 4 nên ta ghép 4 số liên tiếp lại với nhau ta có
S=(1-3+32-33)+....+(396-397+398-399)
S= -20+...+(-20) chia hết cho -20(đpcm)
Cho S = 1-3+32-33+...+398 - 399.
a) Chứng minh rằng : S là bội của -20.
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
Cho S = 1 – 3 + 32 – 33 + … + 398 – 399. Số dư của S khi chia cho 20 là bao nhiêu?
Cho S = 1+3+32+33+......+398. Chứng minh rằng S chia hết cho 13.
Giúp em với ạ, em cảm ơn
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Cho S=1-3+3^2+......+3^98-3^99
a, Chứng minh rằng S là bội của -20
b, Tính S, từ đó suy ra 3^100 chia cho 4 dư 1
cho S= 1-3+3^2-3^3+...+3^98-3^99
a) chứng minh rằng s là bội của -20 b) Tính S, từ đó suy ra 3^300 chia cho 4 dư 1
Cho S=1-3+3^2-3^3+....+3^98-3^99
Chứng minh rằng S thuộc bội của -20
cho S=1-3+3^2-3^3+....+3^98-3^99
a) chứng minh rằng S là bội của-20
b) Tính S từ đó suy ra 3^100:4 dư 1
Cho S= 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99
a) Chứng minh rằng S là bội của ( -20 )
b) Tính S, từ đó suy ra 3 ^100 chia cho 4 dư 1