Answer:
\(xy+2x+y+2\)
\(=x.\left(y+2\right)+\left(y+2\right)\)
\(=\left(x+1\right).\left(y+2\right)\)
\(p=3\Rightarrow\left(x+1\right).\left(y+2\right)=3\)
\(\Rightarrow x+1\) và \(y+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(x+1\) | \(1\) | \(-1\) |
\(x\) | \(0\) | \(-2\) |
\(y+2\) | \(3\) | \(-3\) |
\(y\) | \(1\) | \(-5\) |
\(x+1\) | \(3\) | \(-3\) |
\(x\) | \(2\) | \(-4\) |
\(y+2\) | \(1\) | \(-1\) |
\(y\) | \(-1\) | \(-3\) |