Cho \(P=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)
\(Q=\left(x+y\right)\left(y+z\right)+\left(y+z\right)\left(z+x\right)+\left(z+x\right)\left(x+y\right)\)
CMR : Nếu P=Q thì x=y=z
xét 2 biểu thức: \(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(Q=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
cmr: nếu P=1 thì Q=0
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=\)0 ( x + y + z \(\ne\)0 )
CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
Cho (x+y)(x+z) + (y+z)(y+x) = 2(z+x)(z+y) . CMR: \(z^2=\frac{x^2+y^2}{2}\) !?!?
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\) .CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1.\)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+x}=\)0 ( x + y + z \(\ne\)0 )
CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
CMR neu x,y,z la 3 so phan biet thi M co gia tri la so ngyen M=x^2/(x-y)(x-z) + y^2/(y-z)(y-x) + z^2/(z-x)(z-y)
Cho P=x/(y+z)+y/(z+x)+z/(x+y);Q=x2/(y+z)+y2/(z+x)+z2/(x+y)
Cm P=1 thì Q=0
Cho P = \(\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)
Q = (x+ y)(y+z)+(y+z)(z+x)+(z+x)(x+y)
Chứng minh rằng nếu P= Q thì x = y = z