Vì x, y, z tỉ lệ với 5, 4, 3 nên ta có: \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{2y}{8}=\frac{3z}{9}=\frac{x+2y-3z}{5+8-9}=\frac{x+2y-3z}{4}\)
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{2y}{8}=\frac{3z}{9}=\frac{x-2y+3z}{5-8+9}=\frac{x-2y+3z}{6}\)
Do đó:\(\frac{x+2y-3x}{4}=\frac{x-2y+3x}{6}\)
\(\Rightarrow\)\(\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)