cho đa thức f(x)=x^3+ax^2+bx-2-y
a) xác định a,b biết đa thức có 2 nghiệm là -1 và 1
b)tìm nghiệm còn lại của f(x)
Cho đa thức F(x) = ax2 + bx . Xác định a, b để F(x) – F(x – 1) = x với mọi giá trị của x
1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))
cho f(x) = ax^2 + bx + c. CTR nếu a+b+c = 0 thì x=1 là nghiệm của đa thức trên. Áp dụng để tìm nghiệm:
a) f(x)= 8x^2 - 6x - 2
b) g(x) = 5x^2 - 6x + 1
c) h(x) = -2x^2 - 5x +7
Cho đa thức f(x)=ax2 +bx. Xác định a,b để f(x)−f(x−1)=x với mọi giá trị của x. Từ đó suy ra công thức tính tổng 1+2+...+n (với n là số nguyên dương)
Tìm một nghiệm của đa thức P(x)=x^3+ax^2+bx+c. Biết rằng đa thức có nghiệm và a+2b+4c=-1/2
Cho đa thức f(x) = ax2 + bx + c với a, b, c là các hệ số nguyên sao cho abc là số nguyên tố có 3 chữ số. Chứng minh rằng : f(x) không có nghiệm hữu tỉ.
Cho đa thức P(x)=x3+ax2+bx+c (a,b,c là các số nguyên khác 0).Biết P(a)=a3 và P(b)=b3. Tìm các giá trị của a,b,c
tìm các số nguyên a và b để đa thức x^3 +ax^2+bx +3 chia hết cho đa thức x^2 +2x-1