H24

Cho pt:x2+6x+6a-a2=0

tìm a để pt có 2 no thỏa mãn x2=x13-8x1

VH
24 tháng 5 2022 lúc 23:25

Xét: Δ′=32−(6a−a2)=a2−6a+9=(a−3)2≥0Δ′=32−(6a−a2)=a2−6a+9=(a−3)2≥0 với mọi a

=> phương trình luôn có hai nghiệm: 

Theo định lí viet: \hept{x1+x2=−6(1)x1x2=6a−a2(2)\hept{x1+x2=−6(1)x1x2=6a−a2(2)

Ta có: x2=x31−8x1x2=x13−8x1thế vào (1) 

<=> x31−8x1+x1=−6x13−8x1+x1=−6

<=> x31−7x1+6=0x13−7x1+6=0

<=> x1 = 1 hoặc x1 = 2 hoặc x1 =-3

Với x1=1x1=1ta có: x2=−7x2=−7 thế vào (2): −7=6a−a2⇔\orbr{a=7a=−1−7=6a−a2⇔\orbr{a=7a=−1

Với x1=2x1=2ta có: x2=−8x2=−8 thế vào (2): −16=6a−a2⇔\orbr{a=8a=−2−16=6a−a2⇔\orbr{a=8a=−2

Với x1=−3x1=−3ta có: x2=−3x2=−3 thế vào (2): 9=6a−a2⇔a=39=6a−a2⇔a=3

Vậy có 5 giá trị a thỏa mãn là:...

Bình luận (1)

Các câu hỏi tương tự
TH
Xem chi tiết
CV
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
LA
Xem chi tiết
MH
Xem chi tiết
SS
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết