Violympic toán 9

P2

cho pt x2+2x+m-1=0(*), trg đó m là tham số 
a, giải pt (*) khi m = -2
b, tìm m để pt (*) có 2 nghiệm phân biệt x1và xthảo mãn điều kiện x1=2x2

NT
4 tháng 2 2022 lúc 22:42

a: Khi m=-2 thì phương trình trở thành \(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

hay m<2

Theo hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-\dfrac{2}{3}\\x_1=2x_2=-\dfrac{4}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=m-1\)

\(\Leftrightarrow m-1=\dfrac{8}{9}\)

hay m=17/9(nhận)

Bình luận (0)
AM
4 tháng 2 2022 lúc 22:43

a. Thay m=-2 ta được: \(x^2+2x-2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b. Để phương trình (*) có 2 nghiệm phân biệt thì \(\Delta=4-4\left(m-1\right)>0\Leftrightarrow1>m-1\Leftrightarrow m< 2\)

Áp dụng định lí Vi-et ta có: \(x_1+x_2=\dfrac{-2}{1}=-2\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\dfrac{4}{3}\\x_2=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow x_1.x_2=\dfrac{m-1}{1}=\dfrac{-4}{3}.\dfrac{-2}{3}=m-1\Rightarrow m=\dfrac{17}{9}\)<2

Vậy m=\(\dfrac{17}{9}\)

 

Bình luận (0)
LP
4 tháng 2 2022 lúc 22:42

a, Khi m=-2 thay vào pt ta đc:

x2+2x-2-1=0  =>  x2+2x-3=0 có a=1, b=2 -> b'=1, c=-3

△'=b'2-ac=1-1.(-3)=4

△'>0 nên pt có 2no pb:

\(x_1=\dfrac{-b'^{^2}+\sqrt{\Delta'}}{a}=1\)\(x_2=-3\)

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
KN
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết