H24

Cho PT: \(x^2+2\left(m+1\right)x-8=0\left(1\right)\)

Tìm \(m\) để PT có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(x_1^2=x_2\)

NM
18 tháng 5 2022 lúc 22:48

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=\left(m+1\right)^2+32>0\left(\text{đúng }\forall m\right)\)

Theo Vi-ét: \(\begin{cases} x_1+x_2=-2(m+1)=-2m-2\\ x_1x_2=-8 \end{cases}\)

Vì $x_1$ là nghiệm của PT nên  \(x_1^2=-2(m+1)x_1+8\)

Ta có \(x_1^2=x_2\)

\(\Leftrightarrow-2\left(m+1\right)x_1+8=x_2\\ \Leftrightarrow x_2+2mx_1+2x_1-8=0\\ \Leftrightarrow\left(x_1+x_2\right)+2mx_1+x_1-8=0\\ \Leftrightarrow x_1\left(2m+1\right)-2m-10=0\\ \Leftrightarrow x_1=\dfrac{2m+10}{2m+1}\)

Mà \(x_1+x_2=-2m-2\Leftrightarrow x_2=-2m-2-\dfrac{2m+10}{2m+1}=\dfrac{-4m^2-8m-12}{2m+1}\)

Ta có \(x_1x_2=-8\)

\(\Leftrightarrow\dfrac{2m+10}{2m+1}\cdot\dfrac{-4m^2-8m-12}{2m+1}=-8\\ \Leftrightarrow\left(2m+10\right)\left(m^2+2m+3\right)=2\left(2m+1\right)^2\\ \Leftrightarrow m^3+3m^2+9m+14=0\\ \Leftrightarrow m^3+2m^2+m^2+2m+7m+14=0\\ \Leftrightarrow\left(m+2\right)\left(m^2+m+7\right)=0\\ \Rightarrow m=-2\)

Vậy $m=-2$

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết